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A comprehensive study is made of the eigenvalue relation for the Orr-Sommerfeld
problem. One of the major results obtained is a * first approximation’ to the eigenvalue
relation which is uniformly valid along the entire curve of marginal stability. Two
derivations of this approximation are given, one based on the use of uniform approxi-
mations to the solutions of the Orr-Sommerfeld equation and the other based on the
differential equation satisfied by the eigenvalue relation itself. The theory is developed
in detail for symmetrical flows in a channel but it is also applicable, with minor modifi-
cations, to flows of the boundary-layer type. Near the nose of the marginal curve the
error associated with the approximation is of the order of €%, where ¢ = (iaRU;)3,
and as R - o0 along the upper and lower branches of the marginal curve the errors are
of the order of ¢ and €21n € respectively. A comparison is also made with four heuristic
approximations to the eigenvalue relation, two of which have been widely used in the
past, and detailed calculations for plane Poiseuille flow clearly demonstrate the
superiority of the uniform approximation.
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348 W. D. LAKIN, B. S. NG AND W. H. REID

1. INTRODUCGTION

In the study of the stability of parallel shear flows, a great deal of effort has been devoted to the
derivation of uniform asymptotic approximations to the solutions of the Orr-Sommerfeld
equation, but relatively little attention has been given to the related problem of obtaining a
uniform approximation to the eigenvalue relation. In this paper, therefore, we shall be
concerned primarily with the derivation of a uniform ‘first approximation’ to the eigenvalue
relation and with its relation to some of the heuristic approximations which have been used in
the past.

We begin, in §2, by giving an exact formulation of the eigenvalue problem in terms of certain
second-order Wronskians of the solutions of the Orr—Sommerfeld equation and later, in §6, it is
shown that these Wronskians satisfy a pair of coupled third-order equations. Thus it is possible,
at least in principle, to approximate the eigenvalue relation directly from the equations satisfied
by these Wronskians. In the case of marginal stability, however, the eigenvalue relation can be
substantially simplified. The largest error associated with these preliminary approximations is of
order (aR)~2 for large values of the Reynolds number and it is with this approximation to the
eigenvalue relation that we shall be concerned in the subsequent discussion.

In the usual method of approximating the eigenvalue relation it is necessary to first obtain
approximations to the solutions. For this purpose one might consider using the composite approxi-
mations obtained by Eagles (1969) or Reid (1972) but two major difficulties immediately arise.
First, as Reid (1972, 1974) has argued, these composite approximations are not uniformly valid
in a full neighbourhood of the critical point and, second, they do notlead to the correct structure
of the uniform approximation to the eigenvalue relation. Alternatively, however, we could con-
sider the uniform approximations obtained by Lin (19574, , 1958) or Reid (1974). Lin’s approxi-
mations are expressed in terms of the solutions of a certain fourth-order comparison equation
whereas those obtained by Reid are expressed in terms of a certain class of generalized Airy
functions. It might appear, therefore, that these two approaches lead to different results. In § 3,
however, it is shown that if uniform approximations to the solutions of the comparison equation
are used in Lin’s formulation then his results can be reduced to the simpler forms given by Reid.
These approximations to the solutions of the Orr—Sommerfeld equation are then used in §5 to
derive a ‘first approximation’ to the eigenvalue relation which is uniformly valid in a full neigh-
bourhood of the critical point. An alternate derivation of this approximation, based on a simple
matching technique, is given in §6.

For computational purposesitishelpful to rewrite the approximations in termsof slowly varying
functions only. This can be done, as shown in §7, in terms of certain Tietjens-type functions and
the results obtained for plane Poiseuille flow are found to be in very good agreement with the
‘exact’ numerical results of Reynolds & Potter (1967) and Orszag (1971). Finally, in § 8 we give
a short discussion of four heuristic approximations to the eigenvalue relation in an endeavour to
relate the present uniform approximation to two of the simpler but non-uniform approximations
which have been widely used in the past.


http://rsta.royalsocietypublishing.org/

'\
/\
=0\

Y |

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS

y \

THE ROYAL A

PHILOSOPHICAL
TRANSACTIONS

AL A

A A

N

0\

SOCIETY

OF

OF

Downloaded from rsta.royalsocietypublishing.org

THE ORR-SOMMERFELD PROBLEM 349

2. FORMULATION OF THE EIGENVALUE PROBLEM
Consider then the Orr—Sommerfeld equation which can be written in the form
(iaR) (D2~ a2 —{(U—c¢) (D*—0a?) ¢ — U"¢} = 0, (2.1)
where ¢(z) el*@— is the stream function of the disturbance in the usual normal mode analysis,
U(z) is the basic velocity distribution, R is the Reynolds number, and D = d/dz. A point z. at
which U— ¢ = 0is often called a critical point. If, as we shall suppose, Uy = U’(zc) # 0thenz,can
also be described as a simple turning point of equation (2.1).

The precise form of the eigenvalue relation depends, of course, on the class of basic flows
considered and, for simplicity, we shall consider only symmetrical flows in a channel. With minor
modifications, however, the present results can also be applied to flows of the boundary-layer
type. Because of the symmetry of the basic flow we can treat the even and odd solutions separately.
It is known that the odd solutions are stable and we will therefore consider only the even solutions
which must then satisfy the boundary conditions

¢p=Dp=0 at z=2 and D¢g=D3p =0 at z=z, (2.2)

We will suppose further that U’(z) > 0on the interval [z,, z,) and, without loss of generality, that
U(z,) = 0 and U(z,) = 1. An important flow of this type is plane Poisecuille flow for which
U(z) = 1—z?withz, = — 1 and z, = 0, and this flow will be used for illustrative purposes through-
out the paper.

In discussing asymptotic approximations to the solutions of equation (2.1) and to the eigen-
value relation it is convenient to introduce the parameter

¢ = (ieRU,)5. (2.3)
We sshall suppose, of course, that 0 < |¢| < 1and,inthe case of marginal stability, thatphe = —}m.

Now let ¢;(z) (¢ = 1,2, 3,4) denote a linearly independent set of solutions of equation (2.1).
The general solution of the equation can then be written in the form

¢ = C1¢1+Cz¢2+03¢3+04¢4~ (2-4)

On imposing the boundary conditions (2.2), we obtain a system of four linear homogeneous
equations for the constants C;. For a non-trivial solution, the determinant of the coefficients must
vanish and this leads to the eigenvalue relation

¢11 ¢21 ¢31 ¢41
’ ’ ’ ’
F(a,ce) = ¢f1 ¢?1 ¢?1 ), (2.5)
¢12 ¢22 ¢32 ¢42
n m n 4
12 22 32 42

where ¢, = ¢,(z,) (1= 1,2,3,4; v =1,2). If we now let #"(u,v) (z) denote the usual second
order Wronskian of #(z) and »(z) then, by Laplace’s expansion of a determinant by comple-
mentary minors, we obtain

Fayc,€) = W ($oy $3) (21) AW (41, Ba) (22) /dz
—W (1, $3) (21) AW (b3, $a) (20) /dz
+ W (B1, P2) (21) AW (3, ba) (20) /d2z
+W (P, Pa) (21) AW (B3, $3) (2) /dz
=W ($o, $a) (20) AW (1, $3) (24) /dz
+W (P, $a) (21) AW (b3, $3) (25)/dz = 0. (2.6)
29-2
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350 W.D. LAKIN, B.S. NG AND W. H. REID

The importance of being able to express the eigenvalue relation in terms of these second-order
Wronskians is due to the fact that if # and v denote any two solutions of the Orr—Sommerfeld
equation then it is possible, as will be shown in § 6, toderive a pair of coupled third-order equations
for # (u,v) (z) and # («',v") (z). From these equations it would then be possible, at least in
principle, to derive approximations to the Wronskians and hence to the eigenvalue relation
without having to obtain approximations to the solutions themselves.

Consider next the possibility of simplifying the eigenvalue relation (2.6). For this purpose it is
necessary to characterize the behaviour of the solutions as €0 and, in the terminology of
Wasow (1969), we require therefore that ¢, be well balanced, that ¢, be balanced at z; and z,,
and that ¢, and ¢, be recessive at z, and z, respectively. Although we do not, in general, have
exact representations for the solutions, these conditions suffice to define them uniquely (apart
from arbitrary mutiplicative factors and modulo an arbitrary additive multiple of ¢, in the case
of ¢,). The existence of solutions having these asymptotic properties has been proved by Lin &
Rabenstein (1969) for the class of basic flows considered here but we will make no essential use of
this fact.

In discussing the approximations to equation (2.6) it is necessary to consider the outer expan-
sions of the solutions. These are well-known from the heuristic theory and need only be summar-
ized briefly here. Thus, we have

$:1(2) ~ $9(z) and  ¢y(2) ~ ${7(2), (2.7)

where ¢ and ¢ are solutions of Rayleigh’s equation, i.e. the reduced form of equation (2.1).
These ‘inviscid’ solutions can be expressed in the form

${0(2) = (2—2zc) Fi(2) (2.8)
and $10(z) = By(2) + (U5 /Us) $0(2) In (z— 2c), (2.9)

where P,(z) and P,(z) are analytic at ze with Py(z.) = Py(zc) = 1 and, to fix the normalization,
P}(z¢) = 0. This approximation to ¢, is valid in a full (complex) neighbourhood of z. and the
error associated with itis of order¢3. The approximationto ¢,, however, isvalid only if |z — z¢| > |¢|
and the phase of z— z. is suitably restricted. In particular, when z and z. are real, if we take
ph (z—z¢) = 0 for z—z > 0 then, following Tollmien (1929), we must take ph (z—2z¢) = —m.
We can therefore use ¢4” to approximate ¢, at z, and z, with an error which is again of order ¢?
provided z¢—z; > |¢| and zy—z¢ > |€|. The outer expansions of ¢; and ¢, are of W.K.B.J. type
and they can be written in the form

422 = 16t () exp (= e 10(2)) (146 (2) + 0(69) (2.10)
and Ba(2) = ijn-del (%‘T”)_% exp{+eQ(2)} {1 +64G,(2) + 0(c¥)}, )
where Q(z) = f (QU"—C)4 dz (2.12)
and Gy(2) = (%1—5% e QU—) (ﬁU:—C)}

=(23(U" U" U, \*
-J iz 7m) ) () = (2.18)
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THE ORR-SOMMERFELD PROBLEM 351

These approximations are again valid only if |z—zc| > |¢| and the phase of z— z. is suitably
restricted as discussed, for example, by Lakin & Reid (1970). The terms involving G,(z) are not
needed for the present discussion but they will be required later in §6.

The first simplification of equation (2.6) we wish to consider is based on the observation, which
followed from equations (2.10) and (2.11), that ¢, and ¢, are necessarily dominant at z, and z,
respectively, and hence the first two terms in equation (2.6) are also dominant, the second two
terms are balanced, and the last two terms are recessive. Thus, with an exponentially small error,
we can approximate the eigenvalue relation by

G(ayc,€) =W ($o, Bs) (22) AW (81, $4) (20) /dz
=W (P, B5) (21) AW ($5, $a) (25) /dz = 0. (2.14)

This approximation is equivalent, as Lin (1955, pp. 35-36) has shown, to neglecting ¢3, and ¢,
compared to ¢3; and ¢4, in equation (2.5) and similarly neglecting ¢,; and ¢y compared to ¢y,
and ¢j. To obtain a more precise estimate of the error associated with this approximation we
first note that the largest error arises from the neglect of ¢g, compared to ¢;;. Thus, consider
the ratio ¢gs/¢s5; which can easily be estimated by using the W.K.B.]. approximation (2.10)
to ¢s. If 0 < ¢ < 1, with ¢ bounded away from both 0 and 1, then a simple calculation gives

| @5/ P31 ~ (1—c)ictaR exp{— (3aR)IA(0)}, (2.15)
where o) = f z’[U-ol% dz. (2.16)

To obtain a numerical estimate of (2.15) consider plane Poiscuille flow for which
= LJe—%(1—c¢)artanh Joc+}n(1—c). (2.17)

For values of a, ¢, and R near the nose of the marginal curve equation (2.15) then gives |¢g/¢s,| ~
3 x 10712 which is many orders of magnitude smaller than any of the terms retained in the
subsequent analysis.

On the lower branch of the curve of marginal stability « and ¢ both tend to zero as R —co and
in this case it is necessary to approximate @3, by the first term of its inner expansion. A short calcu-
lation then gives

| ¢/ P3| ~ constant Ri's exp ( — constant R¥) (2.18)

as R—> oo along the lower branch of the curve of marginal stability. The constants appearing in
this equation are both positive and independent of R. They can be evaluated in terms of U’(z,),

2
U’"(z,), and f U?dz but the results are somewhat complicated and are not needed for the
%

present purposes. For flows without inflection points, & and ¢ also tend to zero as R oo on the
upper branch of the curve of marginal stability. In this case, however, equation (2.15) remains
valid and leads to the estimate

I Bl /¢31| ~ constant R¥% exp (— constant Riéi') (2. 19)

as R - oo along the upper branch of the curve of marginal stability.

Thus, when 0 < ¢ < 1, the error associated with the approximation (2.14) is exponentially
small as R — oo and it is very small numerically for values of R near the nose of the marginal curve.
When ¢+ 1, however, we have a situation where two simple turning points coalesce to form a
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352 W. D. LAKIN, B. 5. NG AND W. H. REID

single turning point of second order at z = z,. This situation lies outside the scope of the present
theory and does not occur anywhere on the curve of marginal stability.

In discussing the next approximation it is convenient to rewrite equation (2.14) in a somewhat
different form. For this purpose let

@ = A¢1 ‘+’ ¢2 and é = B¢1 ‘+’ ¢2, (2.20)
s =gty o
and B(a,¢,€) = — Poa/ P12
Equation (2.14) can be written in the equivalent form
Hie0,6) = #'(@, ) (2) - S2ERW (D, ) (2) = o (2.22)

We will now assume that z is closer to z; than to z,, as it happens to be in most problems. This
assumption then permits the neglect of those terms in the asymptotic expansions of ¢, and ¢,
near z, which are recessive on a length scale z, — z.. The distinction here is between expansions
which are valid in the usual Poincaré sense as opposed to being valid in the complete sense of
Watson (Olver 1974, p. 543). The outer expansions (2.7) and (2.11) then show that

12
4. U (2.23)
and —ﬁ=ﬁe3+0(e%).

We also see that the quantities 4 and B defined by equations (2.21) must have expansions of the
form

A(e,c,€) = §] €¥349(a,¢) and B(a,c,€) = S €3 B9 (a, c), (2.24)
=0

8=0 8=
where A9(a, ¢) = BO(at,¢) = — 0 /S0 (2.25)

This last result shows that #7(®, ¢,) (z;) = # (D, $3) (z,) + O(€?) and hence, with a relative
error of the order of €%, we can approximate the eigenvalue relation by

Aatyc,€) = W (D, edg) (2,) = O, (2.26)

where the factor € has been introduced for scaling purposes. This form of the eigenvalue relation
is exact for flows of the boundary-layer type provided 4 is determined from the condition that @
is bounded as z—oo.
In the subsequent discussion of the various approximations to equation (2.26) it is convenient
to let
A(z) = A(a,¢,€52) = W (D, eds) (2) (2.27)

so that the eigenvalue relation in this approximation becomes simply 4(z,) = 0. Our problem
then is to derive a ‘first approximation’ to 4(z) which is uniformly valid in a domain of the
(complex) z-plane containing z,.
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3. UNIFORM APPROXIMATIONS TO THE SOLUTIONS

In the derivation of uniform asymptotic approximations to the solutions of equation (2.1), it is
customary to make a preliminary transformation of the form

$(2) = {n'(2)}"x (1), (3.1)
where the Langer variable #(z) is defined by
z —c\% 3
oG] o

The exponent m in equation (3.1) is often chosen so that the transformed equation is in normal
form, i.e. so that it does not contain y”, and this condition requires that m = — §. Clearly the final
results must be independent of m and, when dealing with equations which are not given initially
in normal form, a more convenient choice would appear to be m = 0. With that choice for m we
then find that equation (2.1) becomes

(X +fo x") — (n+€) X" — (go+€3g1) X' — (ho +€3hy) x = 0, (3.3)

where So(n) = 6,

filn) = — (47" +11y2—2a%'~?),

&n) =17, ] , , (3.4)

g1(n) = — (Y + 77"y + 6%~ 2a2yy’?),

ho(n) = — (297" + 69y + 5y + oy’ ~?),

by(n) = =iy’
and y(n) =n"/n"% (3.5)

It would, of course, have been possible to develop the present theory in a more general form by
assuming only that the coefficients fy, f;, ..., #; which appear in equation (3.3) are analytic
functions of 9 in some neighbourhood of 9 = 0. The general structure of the theory then depends
in a crucial way on the value of g,(0) and to a lesser extent on the value of %,(0). Since we are
primarily concerned with the eigenvalue relation for the Orr—Sommerfeld equation we shall
suppose, for simplicity, that fy, fi, ..., #; have the forms given by equations (3.4) and it is then
easily seen that

@(0) =0 and hy(0) = —5y(0) = — U2/ UL, (3.6)

In discussing the solutions of equation (3.3) it is convenient to consider seven solutions which
will be denoted by U,(7), Uy(7), and V(7)) (£ = 1,2, 3). As in the case of the solutions of the un-
transformed equation, these solutions of the transformed equation can be uniquely defined
(again to within multiplicative factors and modulo an arbitrary additive multiple of Uj, in the
case of the U}) in terms of their asymptotic properties. Thus, we require that U, be well balanced,
that U, be (purely) balanced in T}, and that ¥} be recessive in S, where T and S;, are the sectors
shown in figure 1. It then follows immediately that we must have

$1(2) = CLU(n),  Pa(2) = G Uy () + Gy Us("?),}

(3.7)
P3(z) = CyVi(n), and ¢,(2) = CVa(n),
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354 W.D. LAKIN, B. S. NG AND W. H. REID

where the values of the constants C,, Cy, ..., C, depend only on the way in which the solutions have
been normalized. Without loss of generality, however, we can fix the normalization of the solu-
tions so that

Co=0 and C=C=Cy3=C =1, (3.8)
and we will suppose that this has been done. These seven solutions of equation (3.3) cannot, of
course, be linearly independent but must be related by three connection formulae. Approxima-
tions to these connection formulae can easily be obtained directly from the uniform approxima-
tions to the solutions given below but they are not needed for the present purposes.

/

/
e G,

\

\

Ficure 1. The Stokes lines (left) and the anti-Stokes lines (right) in the #-plane for U, real and positive.

Uniform approximations to the solutions of equation (3.3) and hence to the solutions of equa-
tion (2.1) have been derived by Lin (19574, b, 1958) and Reid (1974) by methods which would
appear to be quite different and it is of some interest, therefore, to consider briefly the relation
between these two approaches. According to Lin’s theory, asymptotic solutions of equation (3.3)
can be found in the form{

X = Au+ Bu' +€3(Cu" + Du"), (8.9)
where u is a solution of the comparison equation
e*ut® — (qu” + o’ + fu) = 0. (3.10)

In equation (3.9), the slowly-varying coeflicients 4, B, C and D all have expansions of the form
A=Aly,e) = éoAs(n) 63, (3.11)
Similarly, in equation (3.10), @ and # must also have expansions of the form
a=ae) = s§0 o, €35, (3.12)

The coefficients 4, By, C, and D, can be determined by solving the differential equations which
they satisfy. In doing so, however, the constants a; and £, must be chosen so that the solutions are
all analytic at # = 0. Although this can be done in principle, it is extremely complicated in
practice. Alternatively, as Lin (19575) has shown, these difficulties can be avoided by the use of a
simple ‘matching’ technique. [The matching here is not of the term-by-term type used in the
usual method of matched asymptotic expansions.] In this latter approach, outer expansions to
the solutions of the comparison equation are substituted into the expansion (3.9) and the results

1 The coeflicients 4 and B which appear in this equation are not related to the quantities defined by equation
(2.21) and the o which appears in equation (3.10) is not related to the wavenumber.
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are then matched to the corresponding outer expansions to the solutions of equation (3.3). In this
way Lin (1958) was able to determine 4,, By, ¢; and Dy; he also found that

%y =go(0) =0 and f, = hy(0) = —Uc/U..

Although this method has been formally successful, nevertheless there are two remaining diffi-
culties which have prevented it from being used in actual calculations. One of these difficulties is
concerned with the truncation of the expansion (3.9) and the other with the approximation of the
solutions of the comparison equation (3.10). We will return to these questions after describing the
method developed by Reid (1974).

According to this theory, uniform asymptotic approximations to the solutions of equation (3.3)
of balanced and dominant-recessive type can be expressed to all orders in terms of the generalized
Airy functions

4,8, p,9) -————f 1P (In¢)%exp (& — 423) dt (3.13)

1 [0+)

and By(&p:9) = 2 (Inf)2exp (§t — 33) ds, (3.14)

271‘,1 wexp [3(%—1)mi]
wherep =0, +1, £2,...,¢=0, 1,2, ..., L, are the usual Airy contours, and a branch cut has
been placed along the posmve real axis in the z-plane so that 0 < ph¢ < 2n. For simplicity we
shall also let 4,(&, p, 0) = A, (&, p). This class of generalized Airy functions was first introduced by
Reid (1972) where further details are given. The concept of a “first approximation’ also plays an
important réle in this theory and is related to the truncation problem mentioned above. A further
distinction must be made between first approximations to the solutions of equation (3.3) and a
first approximation to the eigenvalue relation (2.27).
Consider then the first approximations

Up(n) ~ 9 (1) — el (1) By(§, 2, 1) + €A () By(E, 1, 1) +€%(n) By(&, 0, 1)} (3.15)
and Vi(n) ~ a(n) A(E, 2) +626(n) A(&, 1) +ee(n) 41(&, 0). (3.16)

The slowly varying coefficients in these approximations can all be expressed in terms of three
quantities associated with the outer expansions of Uy, Us, and V. Thus, as in §2, we have

Uo(n) ~ UP(n) and  Us(n) ~ UO(7), (3.17)
where U{® and U® are solutions of the reduced form of equation (3.3). They can also be written
in the form

U(n) = nQs(n) (3.18)
and UO() = Qx(n) +(Uc/Ug) UP(n) Iny, (3.19)

where Q,(5) and @,(%) are analytic at 9 = 0 with @;(0) = @,(0) = 1 and, to fix the normaliza-
tion, @4(0) = 0. This approximation to Uj is actually uniformly valid in a full neighbourhood of
7 = 0 with an error of the order of €%. The approximation to U, is valid in the sense of Watson
only for finite values of 7 in Ty and the error is then also of the order of €3; it remains valid, how-
ever, in the sense of Poincaré in the larger sector S; U S,. The outer expansion of 1 is of W.K.B.J.
type and is given by

Vi(n) = dndet(yy'®)~texp (— fe~iyl) {1 —e2H, (1) + O(e*)} (3.20)

where Hy(n) = 8y~ 4 9yp—t— f (82" + 23y2 — La2y'—2) y—E dy. (3.21)

30 Vol. 289. A.
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This approximation to 7] is valid in the sense of Watson for finite values of  in T, U T and the
relative error is then of the order of €3; it also remains valid in the sense of Poincaré in the sector
—In < ph7y < $n. In terms of these quantities we have

a(y) =7 UPM), () +ne(n) = 7',
4(n) = 27 e(n) + "I~ {H, () — g0,
G(n) = Qz(ﬂ) +(Ue/Ug) [Ine+(2) +2mi] UP(n),
and A (1) [a(n) = B(0)/¢(n) = €(n)/e(n) = U/ Ue
For numerical purposes it is more convenient to compute the inviscid solutions in terms of z
rather than 9. This can easily be done since

UP) = ¢00(2), UOn) = ¢L(2). (3.23)
and Qa(n) = Py(2) — (U U;) ${9(2) In[n/ (2 — zc)]. (3.24)
We also note that H,(5) = G,(z). Thus, the slowly varying coefficients in the approximations
(3.15) and (3.16) can all be expressed ultimately in terms of the regular inviscid solution ¢{(z),
the regular part of the singular inviscid solution ¢4(z), and a regularized form of the coefficient
G,(z) which appears in the outer expansions of dominant-recessive type.

Consider now the relationship between these two methods. Rabenstein (1958) has shown that
the solutions of the comparison equation (3.10) can be expressed in terms of Laplace integrals

(3.22)

but they are too complicated to be used directly in the expansion (3.9). From the integral repre-
sentation of the solutions he then derived inner and outer expansions which were, of course,
automatically matched. Neither expansion, however, is uniformly valid and hence neither
expansion is suitable for use in equation (3.9). What are needed here are uniform approximations
to the solutions of the comparison equation and they provide the necessary link between the two
methods. To illustrate the essential points involved here consider the solution v,(%) of equation
(3.10) which is recessive in S;. It is immediately evident that this solution must have a uniform
first approximation of the form

vi(m) = a(n) 4,(&, 2) +€2b(n) 41(8, 1) +ec(n) 4,(&, 0), (3.25)

and a simple calculation shows that the slowly varying coefficients in this approximation are
given by

a(n) = (Bom)~ %J1(2:30772) a(n) +9¢(n) = 1:} (3.26)

and b(n) = n~[2¢(n) — Fo)-

If this approximation to v,(%) and the corresponding approximations to its derivatives are sub-
stituted into the expansion (3.9) then, in a first approximation to V;(%), it is found that we must
know not only 4,, By, C, and D, but also the quantity B, +#.D;. This is not altogether surprising
since it is known that D appears only in the combination B, + D, and that B,+ D, = 0. Thus,
in effect, itis still necessary to determine only four coefficients in the expansion (3.9). A determina-
tion of the quantity B, +%.D; has been given previously by Lakin & Reid (1970)1 who showed
that it could be expressed in terms of 4,, By, C; and Gy(z). This again shows the importance of the
term Gy(z) which appears in the outer expansions of W.K.B.]J. type and which was not con-
sidered in any of the older heuristic theories.

1 Inthat work it was not fully recognized that, to this order of approximation, B, and D, appear only in the com-

bination B, +7D;. As a result B, should be replaced by B,+%D, in equations (6.8), (6.9), (6.13) and (6.14).
These corrections, however, do not affect any of the results obtained in that paper.
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Thus, by using the results given by Lakin & Reid (1970) for the relevant coefficients in the
expansion (3.9), we can pass directly from the uniform approximation to v,(%) to the corres-
ponding uniform approximation to ¥;(#). This can also be done for the solutions of balanced
type. The calculations involved in this approach are rather lengthy and for that reason they have
not been given in detail. From this discussion, however, we can conclude that the theories of Lin
and Reid lead to uniform ‘first approximations’ to the solutions of the Orr-Sommerfeld equation
which are identical. A similar conclusion would be expected to hold for higher approximations
though it is doubtful that they would ever be needed.

4. ERROR ESTIMATES FOR THE UNIFORM APPROXIMATIONS

In the derivation of the first approximations to the solutions of equation (3.3) it was assumed
that a and ¢ were bounded away from zero. As R — co along the upper and lower branches of the
curve of marginal stability, however, they both tend to zero and in these limits #(z,) is of order
et and ¢ respectively. Ideally, of course, we would like to have error bounds for the approxima-
tions which are valid in a full neighbourhood of the turning point but that would require the
development of a theory of error bounds similar to the one which Olver (1974) has developed for

TABLE 1. ORDERS OF MAGNITUDE FOR SYMMETRICAL FLOWS IN A CHANNEL
WITHOUT INFLECTION POINTS

7 g a ¢ A® 74©
inner € 1 ek e -1 1
intermediate €t % €% €8 -3 1
outer 1 [ 1 1 1 1

second-order equations with a simple turning point. We can, however, obtain simple error
estimates for the inner, intermediate and outer expansions of the solutions which correspond to
7 being of order ¢, €% and 1 respectively, and we then have the orders of magnitude shown in
table 1.

Consider first the solution of well balanced type. It has a uniform expansion of the form

o
Uo(n) = X UL, (4.1)
where U () = O(y) as 70 and UP(0) = a2~ (UY/U;). Thus, if UY # 0 then U{®(y) pro-
vides an approximation to the inner, intermediate and outer expansions of Uy(7) with a relative
error of order €2, €'s* and €® respectively, and we shall denote such error estimates by O(e?, €', €3).
If U = 0, as it does for plane Poiseuille flow, then the error is of order €2 for all #.

Consider next V; () and suppose, without loss of generality, that its outer expansion in Ty U T
does not contain powers of In €. Its inner expansion, however, must necessarily contain powers of
Ine. From a consideration of the four terms in the inner expansion of V;(#) given by Reid (1972) it
then follows that the relative errors associated with the approximation (3.16) are O(e®Ine, €3, €3),
where 9 must lie in the sector T, U T} for the intermediate and outer estimates.

In deriving a consistent first approximation to the eigenvalue relation it is found that the term
involving #(7) in equation (3.16) must be omitted. This is not unexpected, however, since Lakin
& Reid (1970) had observed that when outer expansions are used to approximate the eigenvalue
relation then itis necessary to retain two terms in the outer expansion of ¢ but only one term in the

30-2
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outer expansion of ¢g. It is also found that the final form of the approximation can be greatly
simplified if it is expressed in terms of generalized Airy functions with p = 0, + 1 rather than
p = 0,1,2. Thus, on omitting the term involving (%) in equation (3.16) and then using the
recursion formula

4,8, 2) = L4,(8, 1) — 4,(8, — 1) (4.2)
we obtain eV, (n) ~ L4,(51)
= 1a(n) 4, (& 1) —ea(n) 45(8 — 1) +e%(n) 45(&, 0). (4.3)

In this approximation the relative errors associated with ¥ are O(e?, €5, €f) for €T, U T;. To
assess the errors associated with this approximation to Vj for g € T, we first sum equation (4.3)
over k to obtain

i) ~ —LA45(8, 2) = UP(n) — L 4,(6, 2). (4.4)
On comparing this approximation with the exact connection formula satisfied by the I}, (Reid
1972, eqn (4.2)) it is found that the relative errors associated with the dominant and recessive
terms in the approximation are both O(e?, €%, €%). As might be expected, however, the balanced
term has relative errors O(e?, ¢, €3). The corresponding approximations to V', are given by

eVi(n) ~ MAL(E 1)
= (92)' 43(§ 1) —e(a’— o) A(§, —1) + (£ +2") 4,(E, 0). (4.5)

The relative errors associated with this approximation to V{ are O(e®Ine, €3, ¢®) for e T, U T,
and, on summing over £, they are found to remain of the same orders for e T,.
Consider next the solutions of balanced type for which the corresponding approximations are

Up(n) ~ G (1) =04 () = (Ue/Uo) LBy (6,1, 1) (4.6)
and Ui(n) ~ &' (n) =n'(n) = (Ue/Uc) ABy(E, 1,1). (4.7)

For 7 €T, the errors associated with these approximations are both O(e®Ine, €3, ¢%). To estimate
the errors in the complementary sectors I\'T it is again necessary to use the connection formulae.
For example, on using the connection formula

Bs(é 19 1) = B1(§, 1> 1) —I—27'Ci{1 +A2<€’ 1)} (4'8)
we have

Us(n) ~ % (1) = (1 +2ni) 9.2 (1) = (Ue/Ug) £ B,(§, 1,1) = 2mi(Uc/U) L 456, 1) (4.9)

Thus, for 9 € T4, the errors associated with the balanced term are again O(e®Ine, €3, €3) but for the
term of dominant-recessive type they are O(e2, €, €f).

We must also consider the errors involved in approximating A(, ¢, €) by A9(a,¢). For sym-
metrical flows in a channel it is known that

Zc

(U—c)zdz]_1+0(1) as @l 0 (4.10)

and it is not difficult to show that AM™(e, ¢) = O(a=4) as e | 0. Accordingly, A9(«, ¢) provides an
approximation to 4(a, ¢, €) with relative errors O(e2, ¢'*, €3). From equation (4.10) it also follows
that the product 74©(«, ¢) is of order one along the entire curve of marginal stability.

The disparity between these various error estimates emphasizes once again the distinction
which must be drawn between approximations to the solutions of the Orr—Sommerfeld equation

on the one hand and approximations to the eigenvalue relation on the other.
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5. THE FIRST APPROXIMATION TO THE EIGENVALUE RELATION

We now wish to derive a first approximation to 4(e, ¢, €; z) which is uniformly valid in a full
neighbourhood of z¢. For that purpose it is convenient to rewrite equation (2.27) in the equivalent
form

A(z) =1’ (2) W (¥, eh) (n), (5.1)

where W(n) = AUy(n) +Us(n) (5.2)

and 4(e, ¢, €) is still given by (2.21). Suppose now that we approximate V; and V' by equations
(3.16) and (4.5) but temporarily regard the remaining terms as exact. Then we obtain

A(z) ~ ' {[¥(na)’ = ¥ (na+e*)] 4,(§ 1)
—€[P(a'—c) —Wal A,(§, —1) + e[V (£+ ) — W] 4,(6,0)}.  (5.8)
Clearly we can neglect €34 compared to 7« with relative errors O(e?, €', €3) and this is equivalent
to approximating V] by equation (4.3) rather than equation (3.16). A similar argument shows that

in a first approximation to 4 we must also approximate U, by equation (4.6) rather than equation
(8.15). Thus, on approximating 4, U, and U; we obtain

A(2) ~ 1{[(F = 12) (1a)’ (' —nst") ] Ay(G 1)
—[(AOUY + G — .t} (a' — &) — (AOUW + G — s’y ] Ay(&, — 1)
+e[(AOUO + G —nd) (£+ <) — (A(O)Ué")' + G —net') ] A,(E, 0)
+es (a1) g W TAE 0, Bo(6 1, 1]
[ (ga) — (B +E) 1] WTALG 1), By(G, 1, 1)]
LA (b4 ) — (' —B) ] WAL (G0), By (6 0, D]} (5.4

A crucial step in the simplification of this result is the recognition of the fact that it is possible to
eliminate the B-type Airy functions from equation (5.4). For this purpose let

w(g) = W4:(& 1), By(§, 1, 1)]. (5.5)
Then it is easy to show that w satisfies the inhomogeneous equation
d3w/[d§? - §dw/dE—w = 24,(E, 0). (5.6)

Since w is recessive in the sector S; n T the general solution of this equation must be of the form

w(f) = 24,(£0,1) +CA4,(E, 0). (5.7

The constant in this equation can easily be evaluated by setting { = 0 and using the initial values
4,(0,1) = —4,

4,(0,0) = 37/I'(3)

4,(0,0,1) =%(-'y+—£~—-%1n3+3ni)A1(0,0), (5:5)

By(0,0,1) = _f/—’;e%m 4,(0,0),

and B3(0,1,1) = }(—y+In 3+ 7xi),
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where 7y is Euler’s constant. In this way we obtain |
WA, 1), Bs(8,1,1)] = 24,(E, 0, 1) + (y — 4xi) 4,(&, 0). (5.9)
A similar calculation also gives
W4,(8,0), By(§, 0, 1)] = 4,(6, 1). (5.10)

Thus, in a first approximation to 4, the terms in equation (5.4) which are formally of order €3
can also be neglected. The coefficient of 4,(¢, 1) can be substantially simplified by noting that

(G=n9) (12) = (G =9 ) na = =9 W (30, ${) (2) = 9"~ (5.11)
For computational purposesitis convenient to express the remaining coeflicients, so far as possible
in terms of z. If] as usual, we let

PO(2) = A9(a, 0) $1%(2) + $37(2) (5.12)
then, after some reduction, we obtain

A(z) ~ Ay(& 1) +ep~ty H{[PO(2) —0'8] 4, (¢, ~1)
+(Uc/Ue) $19(2) [24,(8, — 1, 1) = (In £+ 2mi) 4,(8,— 1)1}
+eX{[y'@O(2) (6+4) — PV (2 )c]A (6 0) +(Uc/Uo) [0'$i0(2) (£+¢') — i (2) ]
x[24,(¢,0,1) — (In §+ 2mi) 4,(&, 0)]}. (5.13)

We also note that for any function f(z) we have
1f(2) (6+) —f"(2) e = 772V (${0.) (2)
-G T e+ irms]-a@r@-dir@) G

4
‘Thus, the slowly varying coefficients in equation (5.13) can all be expressed in terms of the Langer
variable 7(z), the basic velocity distribution U(z), the solutions of the inviscid equation ¢{0(z)
and ¢{(z), and the coefficient G;(z) which appears in the outer expansion of ¢4(z).
Equation (5.13) provides a ‘first approximation’ to 4(z) with relative errors O(e?lne, €', €3)
and further simplification is not possible without destroying the uniformity of the approximation.
The form in which we have written equation (5.13) shows that the terms

24,59, 1) — (In &+ 2ni) 4,(6,p)  (p=—1,0) (5.15)

play a réle very similar to the ¢ viscous corrections’ introduced by Tollmein (1947) in his discussion
of the singular inviscid solution.

6. AN ALTERNATE DERIVATION OF THE FIRST APPROXIMATION TO THE
EIGENVALUE RELATION

Second-order Wronskians clearly play an important role both in the formulation of the eigen-
value problem and in the simplification of equation (5.4). In this section, therefore, we wish to
show that if ¥ and v denote any two solutions of the transformed equation (3.3) then it is possible
to derive a pair of coupled third-order equations for # (u, v) (1) and # (¢, v") () from which we
can obtain a simplified derivation of the approximation (5.13). The method which will be used
here is similar to the one described by Gilbert & Backus (1966) in their discussion of propagator
matrices for elastic wave problems.
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If we adopt the vector notation u = (u,u’,u",u",)T for column vectors then equation (3.3)
becomes

1 = My, (6.1)
0 1 0 0
0 0 1 0
M = .
0 0 0 1 (6.2)

Photh g +a etL —f

Now let u; = w} and v; = w? ({ = 1,2, 3,4) be any two solutions of equation (6.1). The 2 x 2
minors of the matrix v} (I = 1,2, 3,4; r = 1, 2) are given by

I/V’;']' = €y w§ w; (63)

1t if r=1 and s=2
where o={—1 if r=2 and s=1 (6.4)
0 otherwise,
and a simple calculation shows that they satisfy the equation
Wiy = Mg Wi — Mg Wys. (6.5)

The six independent components of this equation are

Wiz = W13> W13 = I/V14‘i‘ Wéa, Wéa = W;m
Wia+Sfo Wi = Waa+ (€73 + g1) Wia + (€720 +/1) Wi,

6.6
el = Wi () Wi ) | 9
and Wia+[foWas = — (€7%hy + hy) Wiz — (67380 + 1) Wos.
On eliminating W,,, W,,, Wy, and Wy, we obtain the pair of coupled third-order equations
Wiz +/fo Wia) — (n+€%1) Wis— (g0 +€°%¢1) Wia = €2 (2Wig +fo Was) (6.7)

and

d n /2
(d77 +fo) (W +fy Wia) = (1 +65) Wigh + (g0 +€%2) Wi
d ,
- (37; +fo) (ho +63%s) Wiy — (o + 6%;) Wis.  (6.8)

A general discussion of these equations lies outside the scope of the present paper but we do wish
to show how they can be used to provide an alternate and much simpler derivation of the approxi-
mation (5.13).

Suppose now that we identify # with ¥(= AU, +U;) and v with €}]. Then

Wi =W (¥, eh) () and Wy = #°(V',eV3) (). (6.9)

Since W, and W, are both recessive for finite values of  in S; n T}, this suggests, though it has
not yet been proved, that the rapidly varying terms in their uniform expansions can be expressed
to all orders in terms of 4,({, p,¢) (p =0, +1;¢ = 0,1,2,...). A preliminary study of equations
(6.7) and (6.8), however, shows that the first approximations to %" (%, e/;) and #"(¥’,eV]) must
have the forms

W (¥, eh) (n) ~ Cu(n) 4,(&, 1) +6{Ca(n) 4i(8 — 1, 1) + Cy(n) 44(& — 1)}
+6X{Cy(n) 41(8, 0, 1) + C5(n) 4,(§, 0)}  (6.10)
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and
W (W, eV7) ~ e H{Dy(n) 41(8,0,1) +Dy(n) 4,(&, 0)} + Dy(n) 44(&, 1)
+e{Dy(n) 41(§, —1,1) + Dg(n) 4,(§, — 1)} (6.11)

The slowly varying terms in these approximations can be determined, at least in principle, by
deriving and then solving the differential equations which they satisfy. For example, it is easy to
show that

7C1+8(n) Gy =0 (6.12)

and hence that Ci(n) =9'74, (6.13)

where the constant of integration has been fixed by requiring that C,(0) = 1, but the remaining
nine coefficients satisfy coupled differential equations and their determination by this method is
somewhat complicated. Fortunately, however, once C (%) is known, Cy(%), ..., Cy(y) can be found
quite easily by the use of a simple matching technique. For this purpose we need the outer expan-
sion of #7(®, e¢s) (z) for 5 in Ty U Ty. On using equation (2.10) we obtain

¢

(@0 () ~ et () exp (- e10(2)

x{¢(°)—e%[G()cD(°)—(UU ”) (@<0>+§T][L¢<O>)]+o<es)} (eT,UTy). (6.14)

c

Similarly, on taking the outer expansion of equation (6.10) we have
W (WP, ely) () ~ —in2texp (= {0+ (3 In g+ mi) Cy+7C;y
— e[y 1C, — (3 In &+ ni) 920, — Fen3Cs + (3 In & + i) p3Cy +93C;] + O(e3)}.  (6.15)
Since W' (D, eps) = 9'W (W, el;) we see that, to first order, we must have
7'{Cy + (3 In g+ xi) Cy+9Cy} = '~ DO(2), (6.16)

where we have used the relations 932 = (U~c¢) /U, and Q(z) = 2#%. Since C, is known from
equation (6.13) and C, and Cy must both be analytic at y = 0, we see immediately that

1'Co(n) = 2(Uc/Ug) 7'y~ 4g(2) (6.17)

and 1'Cy(n) = 971y HPO(2) — 't — (Uc/U) (In{ + 2ni) 7(2)}. (6.18)
Similarly, to order e, we have

P {(3Ing+ni) Cy+ C;} = 9'PO(2) (£+ ') — DV (2) e, (6.19)

where equation (5.14) has been used with f(z) = @©(z), and this gives
1'Co(n) = 2(Uc/Ug) {1’ $0(2) (6 +¢) — 7 (2) <} (6.20)

and
7'Cs(n) = ' PO(2) (6+¢) — DY(2) e~ (Ug/Us) (In &+ 2mi) {9’ (2) (£+4) — {7 (2) o). (6.21)

These results are seen to be in complete agreement with equation (5.13). Thus, once the general
structure of the uniform expansion of 4(z) is known, the slowly varying termsin it can be obtained
relatively easily by this matching technique.
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7. A COMPUTATIONAL FORM OF THE FIRST APPROXIMATION TO THE
EIGENVALUE RELATION

The first approximation to the eigenvalue relation is obtained by simply setting z = z, in
equation (5.13) and then equating the right hand side of the equation to zero. The Airy functions
which appear in this approximation are all rapidly varying functions of §; = #(z,)/e and this
behaviour can cause numerical difficulties. Such difficulties can be entirely avoided, however, if
equation (5.13) is divided through by 4,({;, 0) (say). The resulting ratios of Airy functions can
then be expressed in terms of certain Tietjens-type functions which are easy to compute. Con-
sider then the generalized Tietjens function

F(Z,p) = 51—%, (7.1)

where { = ZetMand Z [g f z°|U—c|%dzr (@R}, (7.2)

which were first introduced by Hughes & Reid (1968). When p = 2 and 0 this gives the ordinary
and adjoint Tietjens functions F'(Z) and F*(Z) respectively both of which have been extensively
tabulated. For the present purposes, however, it is more convenient to let

H(Z,p) = ZF(Z,p)

_ obmi 4,(80,p) 73
G- D) (7-8)
and to define the related functions
_Ay(G, 0, 1)
Kar =@ (74

The first approximation to the eigenvalue relation can then be written in the form
[€87/4,(6,, 0] 4(21) ~ H(Z, 1) +7'HPO(z,) — 'k
+(Ue/Uq) $(2) [2K(Z, —1) — (In Z+§mi) [} H(Z, - 1)
2Tl BO(z,) (4+) = PO (2,) o
+(Ue/Uo) [n'$0 (1) (6+¢") — ${7e]
x [2K(Z,0) — (InZ+%ni)]} = 0, (7.5)
where it is understood that %’ is to be evaluated at z; and 4, ¢ and ¢’ are to be evaluated at

7 = 7(21)-

The Tietjens-type functions which appear in equation (7.5) are particularly easy to compute.
We first note that
H(Z, -1) = i/{ZH(Z, 0)} (7.6)

and that H (Z, 0) satisfies the first-order nonlinear equation

H'(Z,0)—-iZ{H(Z,0)}? = 1 (7.7)
and the initial condition
H(0,0) = 3-%I'(%)/I'(§)} e+, (7.8)

31 Vol. 289. A.
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Once H(Z, 0) has been computed, we can obtain H(Z, 1) as the solution of the first-order linear

equation
H'(Z,1)+{H(Z,0)}*H(Z,1) =1 (7.9)

which satisfies the initial condition
H(0,1) = 3-41'(3) e
It is also easy to show that

Ficure 2. The behaviour of H(Z, p) for p = 0, +1. In (¢) the asymptote as Z — 0 is
V3 HL(Z, —=1)+ H(Z, —1) = 0.531.

1
= 1 4 2 LA T 1 3
K(Z,0) lf (H(Z', 1)}dZ + 3( 2\/3 21n3+3m) (7.10)
and K(Z, —1) = K(Z,0) — }iH (Z, 0){H (Z,1)}. (7.11)
(a) (b) 1.0
10F 10+ 15
Im H(Z,1) Im H(Z,0)
9 2.0

0.5 0.5F

: Z 30

1
0 1.0 15 0 05 20 55
Re H(Z,1) Re H(Z,0)
! 05
0.5 220 0.5
Z=0
(©) | 2.5
Im H(Z 1)
20
0.5k \10 4
2
AST)
L | 1
—1.0 —0.5 0 05
Re H(Z, 1)
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Thus, the computation of the four Tietjens-type functions which appear in equation (7.5) require
only the integration of two first-order equations and one quadrature. The general behaviour of
these functions is shown in figures 2 and 3. We also note that

H(Z,p) ~ efmZ-31 +1(2p + 1) el™Z- + 0(Z-9)} (7.12)
and K(Z,p) ~ }InZ+ Lomi— J5(24p — 17) el™Z-4 + O(Z9). (7.13)

These expansions are valid in the complete sense of Watson in the sector §n < phZ < $x but
they remain valid in the sense of Poincaré in the larger sector —n < phZ < 4lx.

(a) Im K(Z,—1) ()

5 Z=10 Tn

| | 1 | | L | L | | | |
0 1 2 -1 0
Re K(Z,0) Re K(Z,1)

Ficure 3. The behaviour of K(Z, p) for p = 0 and —1.

To illustrate the accuracy of the approximation (7.5), we have made a calculation of the curve

of marginal stability for plane Poiseuille flow. For this flow we have U(z) = 1-2% z; = — 1,
ze = — (1—c¢)¥ and z, = 0. We also have
Z = {3[\Je— (1 —c¢) artanh ,/c]}} (aR)} (7.14)
101 23 23 ¢t '
(=3 —-‘ —_ i —_— T —_— e —1— 2
and Gy(z,) i24(1—¢) {24 ¢ %+24c %+24 i artanh ,/c} . (7.15)

The computational procedure used to solve equation (7.5) was similar to the one described by
Hughes & Reid (1968) and need not be repeated again here. The values of the parameters asso-
ciated with the minimum critical Reynolds number were found to bet

¢ = 8769.7, o= 1.0207, and ¢ = 0.2640, (7.16)

1 In calculating the curve of marginal stability it is found convenient to fix Z and iterate for e, ¢ and R. Thus,
the calculations were made for Z = 2.325 (0.025) 2.925 (0.0025) 3.275 (0.025) 8 which corresponds to R, < R S
6 x 108 along the upper branch and R, < R S 4 x 107 along the lower branch. These remarks also apply to the
results described in §8. Copies of these results with some further details of the computational procedure can be
obtained from B. S. Ng.

31-2
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and these results should be compared with the ‘exact’ numerical values

Re = 5772.22, ac = 1.0205, and ¢ = 0.2640 (7.17)
which were obtained by Orszag (1971) and subsequently confirmed by Davey (unpublished).
The values of « and ¢ for R = 7500 and 9000 have also been computed numerically by Reynolds

TABLE 2. A COMPARISON WITH THE RESULTS OF REYNoLDs & POTTER (1967)

uniform approximation Reynolds & Potter
! A~ A r A B
R o ¢ a ¢
7500 lower branch 0.8750 0.2345 0.875 0.2344
upper branch 1.0944 0.2597 1.094 0.2597
9000 lower branch 0.8233 0.2203 0.823 0.2203
upper branch 1.0971 0.2515 1.097 0.2515

& Potter (1967) and a comparison with their results is given in table 2. Near the nose of the curve
of marginal stability the error associated with the approximation (7.5) would be expected to be
of the order of €2. The worst error in the present results is in the value of R for which the actual
error is about 0.044 9, compared with an expected error of about 0.017%,.

It is easy to verify that equation (7.5) gives the correct behaviour of the asymptotes to the
upper and lower branches of the curve of marginal stability as R — oo and that the errors are then
oforder ¢’ and ¢? In ¢ respectively. Thus, equation (7.5) provides a uniform ¢ first approximation’
to the eigenvalue relation which is valid along the entire curve of marginal stability.

8. HEURISTIC APPROXIMATIONS TO THE EIGENVALUE RELATION

The approximation (7.5) has a very different structure from the so-called heursitic approxi-
mations which have been widely used in the past and it is of some interest, therefore, to compare
the results obtained by using these heuristic approximations with those obtained by using the
uniform approximation (7.5). In the heuristic approach to the eigenvalue problem, ¢, and ¢, are
approximated by the first terms in their outer expansions and various approximations to ¢, are
then considered. Thus we approximate equation (2.27) by

A(Z) & A9(2) = W (DO, e¢,) (2). (8.1)

(@) The local turning point approximation to ¢4(z)

If ¢4(2) is approximated by the first term of'its inner expansion then we have

$s(2) ~ 41(8,2), where &= (z-2zc)/e, (8.2)
and equation (8.1) becomes
A0(z) ~ {@O(2) — (2 zc) PV (2)} 4, (8, 1) +6PV (2) 4, (8, — 1). (8.3)
For computational purposes this is usually written in the form
Ui DOz
¢ (p(o)( 1)) +{1+2,(e)} F(Y) =0, (8.4)
where £ = Ye ™, ¥ = (zo-2z) (@RU)E ’} (8.5)
1+2(0) = (Ui/C) (ze— '
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and F(Y) is the Tietjens function [cf. equation (7.1)]. Calculations based on equation (8.4) lead
to the results given in table 3 and shown in figure 4. In this approximation, the asymptotes to the
upper and lower branches of the curve of marginal stability are given correctly but the errors are
of order €t and eln e respectively. The approximation is clearly not uniform, however, since it
involves the outer expansions of ¢; and ¢, combined with the inner expansion of ¢;.

TABLE 3. RESULTS FOR PLANE POISEUILLE FLOW BASED ON THE
HEURISTIC APPROXIMATIONS TO THE EIGENVALUE RELATION

approximation to ¢,(z) equation R, a, ¢
local turning point (8.3) 5397.1 1.022 0.2672
Tollmien (8.8) 5697.3 1.010 0.2607
uniform (truncated equation) (8.14) 4880.9 1.034 0.2721
uniform (Orr-Sommerfeld equation) (8.15) 6052.1 1.020 0.2621
‘exact’ values — 5772.2 1.021 0.2640
1.10f
o
1.00
=
090"
b
0.80

Rx1073

Ficure 4. The curves of marginal stability for plane Poiseuille flow according to the heuristic approximations to
the eigenvalue relation. The approximations used for ¢4(z) are (a) the local turning point approximation,
(b) Tollmien’s improved viscous approximation, (¢) uniform approximation (truncated equation) and
(d) uniform approximation (Orr—Sommerfeld equation). The circled points correspond to the values of
a, and R,. The dashed curve is based on ‘exact’ numerical values obtained by Reynolds & Potter (1967),
Orszag (1971) and T. H. Hughes (unpublished) ; on this scale it is indistinguishable from the results obtained
by using the fully uniform approximation (7.5).

(b) Tollmien’s improved approximation to py(z)

In the derivation of the inner approximation (8.2) and the first term of the outer approxima-
tion (2.10), the only terms in the Orr—Sommerfeld equation which contribute are (iaR)~1¢iv
and (U—c¢) ¢". This suggests that, in approximating ¢, it may be permissible to start with the
¢ truncated’ equation (1@R) _1¢w_ (U__ C) ¢// = 0. (86)

31-3
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This is a second-order equation for ¢” to which all of the standard asymptotic theory for second-
order equations with a simple turning point is directly applicable, and a casual application of
that theory (Shen 1964; Reid 1965) leads to Tollmien’s ¢ improved’ approximation

Ps(2) ~ 7' 84,(L, 2). (8.7)

In differentiating this approximation, only the term which arises from the differentiation of
4,(¢&, 2) can consistently be retained and, in this approximation, equation (8.1) becomes

AO(z) ~ 7' ~Hy' PO (2) — gDV (2)} 4, (£, 1) +ey’ DO (2) 4y (E, ~1). (8.8)
For computational purposes this can be written in the form
Uj 99(z,) _
= (2, +{1+2,(c)} F(Z) = 0, (8.9)
Ui 9(z1)
where 14+ 2,0c) = ==L
+(0) ¢ 1'(z)
_ 30 fzc(c—[])%dz (8.10)
2 ¢t ).

and Z is defined by equation (7.2). Calculations based on this approximation to 49(z,) lead to
the results given in table 3. The improvement in the value of R, compared to the local turning-
point approximation, has led to the widespread belief that (8.7) is a significantly better approxi-
mation to ¢4 than (8.2). This improvement is somewhat misleading, however, as shown by the
results given in figure 4.

To assess the errors associated with Tollmien’s approximation to ¢, consider equation (3.16)
which, with £ = 1, can be written in the alternate form

Balz) ~ 7' HAL(G 2) — (20~ 1) A4(5,3) — 362 s 6, 4).

This shows that when 9 € Ty U T4, the relative errors associated with the approximation (8.7) are
O(e, €3,€t). When 5 € T n S,, i.e. in the sector containing 7,, equations (3.16) and (8.7) can each be
written as the sum of dominant, balanced and recessive terms. The relative errors associated with
the dominant and recessive terms in (8.7) remain unchanged, as would be expected, but those
associated with the balanced term are O (e, €, 1). Thus, equation (8.7) does not provide a uniform
approximation to the solution of either the truncated equation (8.6) or the Orr-Sommerfeld
equation (2.1).

(¢) The uniform approximation to ¢4(z) based on the truncated equation

To derive uniform approximations to the solutions of the truncated equation (8.6) we again
make the preliminary transformation (3.1) with m = 0. This leads to an equation of the form
(3.3) where the coefficients are now given by

Jo(n) = 6y, L) =—(4y"+ 1177,
&) =1y, &) = - (7"+77’7+673),} (8.11)
ho(0) =0,  hy(y) = 0.

Let 7,(5) denote the solutions of this equation which are of dominant-recessive type. Then they
must also have uniform approximations of the form (3.16) and a short calculation shows that the

slowly varying coeflicients in the approximations are given by

a() = (z—zc) /1, «@(n) +7n0(n) = 7'~4, }

8.12
and 4(n) = 297 Ye(n) + 'ty HGy(2) — 4591}, (8.12)


http://rsta.royalsocietypublishing.org/

'y
N
o \

L A

A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A

/ \

r

A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

THE ORR-SOMMERFELD PROBLEM 369

where Gy(z) is now given by [cf. equation (2.13)]

101 U’ 1 UN( U\ 1 f2(U" U"\( U,\*
6= (= mo) o) ral o)) = e

c

If we now approximate eV and ¢V by ZA4,(¢, 1) and A4, (L, 1) respectively, where «, £and care
given by equations (8.12), then equation (8.1) becomes
A40(z2) ~ {DO(2) — (2 - z¢) PV (2)} 4,(§, 1)
+en~ 1y HPO(2) — ' HDO(2) — (2—zc) DV () [} A6, — 1)
+6Xy'DO(2) (4 +&) — DO (2) o} 4;(E, 0)}. (8.14)

o

—Hw

1N
B
o

ReK(Z-1)—4InZ
0.2

(8)

Im K(Z,0)~ }n 01
A Tm K(Z; 1)~

(a)
—04| ’

ReK(Z0)—1InZ 2.297

—o06bL

Ficure 5. The behaviour of the ‘viscous corrections’ K (Z, p) — (x In Z+ 5%ni) for p = 0 and — 1. The circled
points correspond to the minimum critical Reynolds number and Z = 2.297 corresponds to the asymptote
to the lower branch of the marginal curve.

Although the structure of this approximation is similar to that of equation (5.13) it leads, as table
8 and figure 4 clearly show, to surprisingly poor results. The approximation (8.14) is, of course,
defective in two respects since the approximations to ¢, and ¢ used in its derivation are not
uniform.

(d) The uniform approximation to ¢s(2) based on the Orr—Sommerfeld equation
To assess the relative effects of these two defects, consider now an approximation to 49(z) in
which e¢, and eg; are approximated by £4,(¢, 1) and 9'.#4,(¢, 1) respectively, where #, £ and ¢
are given by equations (8.22). This leads immediately to
A0(z) ~ 4,5, 1) + ey HPO(2) — '} 4, (6, — 1)
+e¥n'PO(2) (6 + ') — D (2) ¢} 4,(¢, 0).  (8.15)
For computational purposes this can be written in the form

e-g'rri

L0y A0@) ~ HZ )+ Ho0(z) -1 BH(Z, - 1)
161 +e2ed iy’ @O(z2,) (£ +¢) — DY(z)) ). (8.16)
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This approximation to the eigenvalue relation differs from the uniform approximation (7.5) only
in the absence of the ‘ viscous corrections’ K(Z, p) — (3 In Z+5ni) whose behaviour is shown in
figure 5 for p = 0 and — 1. Although the differences between the approximations (7.5) and
(8.16) might appear to be small, they obviously are of crucial importance numerically as the
results given in table 3 and figure 4 clearly show.

Thus, it would appear that equation (7.5) provides a ‘first’ uniform approximation to the
eigenvalue relation for the Orr—Sommerfeld problem and that further simplification is not
possible without destroying the uniformity of the approximation.

9. DiscussioN

Throughout this paper we have, for simplicity, considered only the Orr—Sommerfeld equation
but it would appear that the basic ideas involved are applicable, with some generalizations, to a
wide variety of problems in hydrodynamic stability. One important example would be the system
of equations, of order six, which governs the stability of compressible boundary layers. Heuristic
approximations to the eigenvalue relation for this problem are found to fail at high Mach num-
bers and this failure has usually been attributed (Lees & Reshotko 1962; Shen 1964) to the sharp
distinction which is made in the heuristic theory between the rapidly varying ¢ viscous’ solutions
and the slowly varying ‘inviscid’ solutions. No such distinction is made in the present theory
since all viscous effects are fully included in the uniform approximations to both the solutions and
the eigenvalue relation. Some progress has already been made in this problem by Ng (1976) who
derived uniform ‘first approximations’ to the solutions of the Dunn-Lin equations. Another
example would be the equation, also of order six, which governs the stability of stratified viscous
shear flows. Some partial results have recently been obtained by Davey & Reid (1977) in the
special case of stratified plane Couette flow with a constant buoyancy frequency and a Prandtl
number of one. Neither of these problems lends itself to treatment by the comparison equation
method, but the derivation of first approximations to the eigenvalue relation, along the lines
described in this paper, appears much more promising.

We are grateful to Dr D. W. Dunn for the interest he has shown in this work over the years and
one of us (W.H.R.) is particularly indebted to Dr R. Burridge for a stimulating discussion which
led to the results described in §6.
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